
FaSST: Fast, Scalable, and Simple
Distributed Transactions
with
Two-Sided (RDMA) Datagram RPCs

Anuj Kalia (CMU), Michael Kaminsky (Intel Labs), David Andersen (CMU)

RDMA
● Modes of communication

○ One-sided RDMA (CPU bypass)
■ Read
■ Write
■ Fetch_and_add
■ Compare_and_swap.

○ An MPI with SEND/RECV verbs
■ Remote CPU is used

RDMA is a network feature that allows
direct access to the memory of a remote
computer

*slide taken from author’s presentation at OSDI’16

*slide taken from author’s presentation at OSDI’16

Problem with one-sided RDMA

Solution-
Connection sharing

*slide taken from author’s presentation at OSDI’16

Problem with one-sided Reads

Locking
overheads

*slide taken from author’s presentation at OSDI’16

*slide taken from author’s presentation at OSDI’16

Contribution
● FaSST : In-memory distributed transaction processing system based on

RDMA
○ RDMA-based system for key-value store
○ RPC style mechanism implemented over unreliable datagrams
○ In-memory transactions
○ Serializability
○ Durability
○ Better scalability

● Existing RDMA-based transaction processing
○ One-sided RDMA primitives
○ Flexibility and scalability issues
○ Bypassing the remote CPU

Distributed key-value store
● Multiple RDMA Reads to fetch

the value
○ One read to get the pointer

from the index
○ One read to get the actual

data
○ Solutions

■ Merge the data with
index [FaRM]

■ Caching the index at
all servers

RDMA
RDMA operations

● Remote CPU bypass (one-sided)
○ Read
○ Write
○ Fetch-and-add
○ Compare-and-swap

● Remote CPU involved (messaging,
two-sided)

○ Send
○ Recv

VIA-based RDMA

● User level, zero-copy
networking

● Commodity RDMA
implementations

○ InfiniBand
○ RoCE

● Connection oriented or
connection less

VIA-based RDMA
● Facilitates fast and efficient data exchange between applications running on

different machines
● Allows applications(VI consumers) to communicate directly with the network

card(VI provider) via common memory areas bypassing the OS
● Virtual interfaces are called queue pairs

○ Send queue
○ Receive queue

● Applications access QPs by posting verbs
○ Two-sided verbs, send and receive involve CPU

○ One-sided verbs, read, write and atomic bypass the CPU

RDMA transports
● Connection oriented

○ One-to-one communication between two QPs
○ Thread creates N QPs to communicate with N remote machines
○ One-sided RDMA
○ End-to-end reliability
○ Poor scalability due to limited NIC memory

● Connectionless
○ One QP communicates with multiple QPs
○ Better scalability
○ One QP needed per thread

RDMA transports
● Reliable

○ In-order delivery of messages
○ Error in case of failure

● Unreliable
○ Higher performance
○ Avoids ACK packets
○ No reliability guarantees

● Modern high speed networks
○ Link layer provides reliability

■ Flow control for congestion-based losses
■ Retransmission for error-based losses

One-sided RDMA

One-sided RDMA for transaction processing system
● Saves remote CPU cycles
● Remote reads, writes, atomic operations
● Connection-oriented nature
● Drawbacks

○ Two or more RDMA reads to access data
○ Lower throughput & higher latency
○ Sharing local NIC queue pairs

RPC

RPC over two-sided datagrams verbs
● Remote CPU is involved
● Data is accessed in a single round trip
● FaSST is an all-to-all RPC system

○ Fast
■ 1 round trip

○ Scalable
■ One QP per core

○ Simple
■ Remote bypassing designs are complex, redesign and rewrite data structures
■ RPC based designs are simple, reuse the existing data structures

○ CPU-efficient

FaSST
Uses datagram as opposed to
connection oriented transport

Uses RPC as opposed to READs in
one-sided RDMA

Advantages of RPCs over one-sided RDMA
● Recent work focused on using one-sided RDMA primitives

○ Clients access remote data structures in server’s memory
○ One or more reads
○ Optimizations help reducing the number of reads

● Value-in-index
○ Used in FaRM
○ Hash table access in 1 READ on avg
○ Specialized index to store data adjacent to its index entry
○ Data read along with the index
○ Limitation

■ Read amplification by a factor of 6-8x
■ Reduced throughput

Advantages of RPCs over one-sided RDMA
● Caching the index

○ Used in DrTM
○ Index of hash table cached at all servers in the cluster
○ Allows single READ GETs
○ Works well for high locality workloads
○ But indexes can be large e.g. OLTP benchmarks

● RPCs allows access to partitioned data stores with two messages-request
and reply

○ No message amplification
○ No multiple round trips
○ No caching required
○ Only short RPC handlers

Advantages of datagram transport over
connection-oriented transport

● Connection oriented transport
○ A cluster with N machines and T threads per machine

■ N*T QPs per machine
■ May not fit in NIC’s QP cache
■ Share QPs to reduce QP memory footprint
■ Contention for locks
■ Reduced CPU efficiency
■ Not scalable

● QP sharing reduces per-core throughput of one-sided READs by up to 5.4x

Advantages of datagram transport over
connection-oriented transport

● Datagram transport
○ One QP per CPU core to communicate with all remote cores

■ Exclusive access to QP by each core
■ No overflowing of NIC’s cache

○ Connection less
○ Scalability due to exclusive access
○ Doorbell Batching reduces CPU use

● RPCs achieve up to 40.9 Mrps/machine

Doorbell Batching
● per-Qp doorbell register on the NIC
● Post operations(send/recv) by user processes to NIC

○ Write to doorbell register
○ PCIe involved hence expensive
○ Flushing the write buffers
○ Memory barriers for ordering

● PCIe messages are expensive
○ Reduce CPU-to-NIC messages (MMIOs)
○ Reduce NIC-to-CPU messages (DMAs)

● Doorbell batching reduces MMIOs

Doorbell Batching
● With one-sided RDMA reads

○ Multiple doorbell ringing required for a batch of packets
○ Connected QPs
○ Number of doorbells equal to number of message destinations appearing in the batch

● For RPCs over datagram transport
○ One doorbell ringing per batch
○ Regardless of individual message destinations
○ Lesser PCIe overheads

FaSST distributed transactions
● Distributed transactions in a single data centre
● A single instance scales to few hundred nodes
● Symmetric model
● Data partitioned based on a primary key
● In-memory transaction processing
● Fast userspace network I/O with polling
● Concurrency control, two phase commit, primary backup replication
● Doorbell batching

Setup

Cluster used # nodes # cores NIC

CX3 192 8 ConnectX-3

CIB 11 14 Connect-IB 2x higher BW

Comparison of RPC and one-sided
READ performance

Comparison on small cluster
● Measure the raw/peak throughput
● 6 nodes in cluster for READs

○ On CX3, 8 cores so 48 QPs
○ On CIB, 14 cores so 84 QPs
○ Using 11 nodes gives lower throughput due to NIC cache misses
○ 1 READ for RDMA

● 11 nodes in cluster for RPCs
○ Using 6 nodes would restrict max non-coalesced batch size to 6
○ On CX3, 8 cores so 8 QPs
○ On CIB, 14 cores so 14 QPS

● Both READs and RPC have exclusive access to QPs in a small cluster
○ CPU is not the bottleneck
○ NIC is the bottleneck

Result- CX3 small cluster

Read
amplification

Comparable No amplification,
exclusive access

Doorbell batching

Result- CIB small cluster

FaSST RPCs are
bottlenecked by NIC

Effect of multiple reads vs RPCs

● RPCs provide higher throughput than using 2 or more READs
● Regardless of

○ Cluster size
○ Request size
○ Response size

Comparison on medium cluster

● Poor scalability for one-sided READs
● Emulate the effect of large cluster on CIB

○ Create more QPs on each machine
○ N physical nodes, emulate N*M nodes for varying M
○ For one-sided READs, N*M QPs
○ For RPC, QPs depends on # cores(14 in this case)

● FaSST RPCs performance is not degraded
○ QPs independent of cluster size

Result- CX3 medium cluster

Constant because QPs independent of #
nodes in cluster

NIC cache misses

QPs doubled

Result- CIB medium cluster
More gradual decline as compared to CX3
due to larger NIC cache in CIB

Shared QPs
● QPs shared between threads in one-sided RDMA

○ Fewer QPs so lesser NIC cache misses
○ CPU efficiency reduced
○ Lock handling required
○ Advantage of bypassing remote CPU is gone

● RPCs do not use shared QPs
○ Overall less CPU cycles required in a cluster setup

Local CPU cycles overhead offsets the advantage of bypassing the remote
CPU in one-sided RDMA.

Reliability

Abstraction layers

Physical Connection

Transaction
 System

Transaction
 System

FaSST
RPCs

FaSST
RPCs

 RDMA RDMA

FaSST RPCs

FaSST RPCs
● Designed for transaction workload
● Small objects(~100 byte) and few tens of keys
● Integration with coroutines for network latency hiding(10 us)

○ ~20 coroutines are sufficient to hide network latency

Coroutines
● Blocking IO is not needed
● Cooperative/non-preemptive multitasking
● Yields after initiating network IO
● Master thread

○ One RPC endpoint per thread, shared
among Master coroutine and Worker
coroutine

● Switch between coroutines takes 13-20 ns

Why coroutines?
● With coroutines, the programmer and

programming language determine when to
switch coroutines.

● Tasks are cooperatively multitasked by
pausing and resuming functions at set
points.

● Pre-emption might not be in sync with the
application, in case of normal threads.

● Less switching overhead

coroutine func {
 yield Task1;
 yield Task2;
 yield Task3;
}

int main() {
 print func();
 print func();
 print func();
}

Output - Task1,Task2,Task3

Optimizations
● Source - destination thread mapping

○ Restrict RPC communication between peer threads

Optimizations
● Source - destination thread mapping

○ Restrict RPC communication between peer threads

● Request batching
○ Reduces number of doorbell from b to 1
○ Allows RPC layer to coalesce messages sent to one machine
○ Reduces coroutine switching overhead(master yields only after receiving b responses)

Optimizations
● Source - destination thread mapping

○ Restrict RPC communication between peer threads

● Request batching
○ Reduces number of doorbell from b to 1
○ Allows RPC layer to coalesce messages sent to one machine
○ Reduces coroutine switching overhead(master yields only after receiving b responses)

● Response batching
○ Similar advantages as request batching

Optimizations
● Source - destination thread mapping

○ Restrict RPC communication between peer threads

● Request batching
○ Reduces number of doorbell from b to 1
○ Allows RPC layer to coalesce messages sent to one machine
○ Reduces coroutine switching overhead(master yields only after receiving b responses)

● Response batching
○ Similar advantages as request batching

● Cheap RECV posting
○ RECV requires creating descriptors in the RECV queue
○ Descriptor transfer from memory to NIC using DMA
○ DMA reads reduces CPU overheads

Detect packet loss
● Master counts the response for each worker to track the progress
● Master thread block worker, if it doesn’t receive b responses before timeout
● Counter for worker doesn’t change till timeout(1 second)

○ Packet loss
○ All worker threads can commit transaction before packet loss detection

● False positive for smaller timeout values
● Master kills the process in case of a packet loss

RPC Limitations
● MTU

○ 4096 bytes
○ Could be solved with segmentation in RPC layer

● Receive queue size
○ One message per destination to reduce the NIC cache thrashing
○ N * t * c [N nodes, t threads/node, and c coroutines per thread]

■ Requires t queues of size N * c * m [m messages per destination]
■ t queues of size N * c

Single-core RPC performance
● 2.0 Mrps for READs with QP shared

between 3 or more threads
○ CIB baseline 2.6 Mrps
○ CIB maximum 4.3 Mrps : > 2x gain

● For 4.3 Mrps
○ 4.3 million SENDs for requests
○ 4.3 million SENDs for requests
○ 8.6 million for their RECVs
○ Total 17.2 million verbs per second
○ One-sided READs can achieve 2 million

verbs per second
Figure: Per-core RPC throughput as optimizations
2–6 are added

Transactions

Bucket layout

Figure: Layout of main and overflow buckets in MICA based hash table

● 8 byte keys
● Upto 4060 byte values
● 8 byte headers

○ Concurrency control
○ Ordering commit log records during

recovery
○ Several keys can map to same header

Two-phase Commit
● Prepare phase

○ Each slave sends DONE to master
○ Master sends READY? to each slave

● Commit phase
○ Master sends COMMIT to all slaves
○ Each slave sends ACK to master

Optimistic Concurrency Control Phases
● Begin

○ Record a timestamp marking the transaction's beginning.

● Modify
○ Read database values, and tentatively write changes.

● Validate
○ Check whether other transactions have modified data that this transaction has used.

● Commit/Rollback
○ If there is no conflict, make all changes take effect. If there is a conflict, resolve it, typically by

aborting the transaction, although other resolution schemes are possible.

Coordinator log based two-phase commit
Figure:FaSST’s transaction protocol with tolerance
for one node failure. P1 and P2 are primaries and
B1 and B2 are their backups. C is the transaction
coordinator, whose log replica is L1. The solid
boxes denote messages containing application
level objects. The transaction reads one key from
P1 and P2, and updates the key on P2.

Handle failure and packet loss
● FaSST provides serializability and durability, but not high availability
● Machine failure recovery mechanism(have not implemented)

○ Leases, cluster membership reconfiguration, log replay and log replication

● Convert packet loss to machine failure
○ Kill the FaSST process

● No packet loss for 50 PB of data
○ Rare event
○ Each failure is 5x50 ms of down time -> 99.999% availability.

Implementation
● Handler for get, lock, put, and delete
● User registers for table and respective handlers
● RPC request type decides which table to refer
● Exclusive data store partition per thread

○ Not scalable in clustered setup, require large RECV queue size

● Transaction APIs
○ AddToReadSet(K, *V) and AddToWriteSet(K, *V, mode)

■ Mode - insert, update, delete.
○ Execute() - All requests in one go, to support doorbell batching.

■ Abort() - If the key is locked.
○ Commit() - Runs the complete protocol i.e validation, logging and commit.

Evaluation

Workloads
● Object store

○ Read-mostly OLTP benchmark
○ Effect due to multi-key transactions and write-intensiveness

● TATP
○ Simulates a telecommunication provider’s database
○ 70% transactions read 1 key
○ 10% transactions read 1-4 key
○ 20% transactions modify key

● SmallBank
○ Simulates bank account transactions
○ 85% transaction update a key

3-way logging and replication

Setup comparison

Nodes NICs CPUs(core used, GHz)

FaSST 50 1 1x E5-2450 (8, 2.1 GHz)

FaRM 90 2 2x E5-2650 (16, 2.0 GHz)

DrTM+R 6 1 1x E5-2450-v3 (8, 2.3 GHz)

Single-key vs multi-key transactions
● 8 byte keys and 40 byte values
● 1M keys per thread in cluster.

● O(r, w) - Read r key and update w keys
● O(1, 0) - single-key read-only transaction
● O(4, 0) - multi-key read-only transaction
● O(4, 2) - multi-key read-write transaction

Single-key read-only transactions
● CX3 - Bottlenecked by NIC@11 Mrps
● CIB - CPU bottleneck

○ No doorbell batching for requests

Comparison

● FaRM 90 machine cluster and FaSST 50
● Suited to FaRM’s design goal to bypass

remote CPU
○ Local CPU is the bottleneck

● 1.25x higher throughput per machine with
less resources per machine

Multi-key transactions
● O(4,0) larger transactions

○ Reason for throughput decrease
● Both CX3 and CIB are bottlenecked by

NICs

● O(4,2) larger transactions
● CPU bottleneck because of inserts into the

replicas on CIB

Comparison for read-intensive workload

Figure:TATP Throughput

● 70% single key read, 10% 1-4 key
read and 20% key modify

● Scales linearly
● FaSST performs 87% better than

FaRM on 50 nodes cluster

Comparison for write-intensive workload

Figure: SmallBank throughput

● 1 Lakh bank accounts per thread
● 4% of total accounts accessed by

90% of transactions
● Scales linearly in this case too

● FaSST outperforms DrTM+R by
1.68x on CX3 and 4.5x on CIB

● DrTM+R is slow because
○ 4 one way operations as compared

to 2 in FaSST for write operation
○ ATOMICs are expensive on CX3
○ May be affected by NIC cache

misses as no QP sharing in DrTM

Latency
● TATP workload
● Latency for committed transactions
● 14 threads per machine

○ 1-19 coroutines per thread
● One worker per thread

○ 19.7 Mrps
○ 2.8 us median latency
○ 21.8 us 99th percentile latency

● 19 workers per thread
○ 95.7 Mrps
○ 12.6 us median latency
○ 87.2 us 99th percentile latency

Future trends and their effects on FaSST

Scalable one-sided RDMA
● Dynamically Connected Transport

○ 3 messages for QP change, large overhead for large fanout workload
○ NIC cache misses due to frequent QP change

● Portals: Scalable one-sided RDMA using connectionless design
○ Multiple round trip to access datastore
○ Scalable one-sided WRITE might outperform FaSST

● Best design will likely be hybrid of RPCs and remote bypass
○ RPCs used for accessing data structures
○ Scalable one-sided WRITEs for logging and replication.

More queue pairs
● CIB(new) can cache larger QPs as compared to CX3(old)
● QPs are increasing in newer NICs
● #Cores are also increasing in newer CPUs
● Sharing QP is not a good idea

Supports FaSST’s datagram based design

Advanced one-sided RDMA
● Even if NIC can support multi-address atomic operation and B-Tree traversals

○ NIC to Memory path is costly
○ CPU onload is better in such cases and not NIC offload

 FaSST is expected to work well in these scenarios.

Conclusion
Transactions with one-sided RDMA are:

● Slow: Data access requires multiple round trips
● Non-scalable: Connected transports
● Complex: Redesign data stores

Transactions with two-sided datagram RPCs are:

● Fast: One round trip
● Scalable: Datagram transport + link layer reliability
● Simple: Re-use existing data stores

FaSST outperforms by 1.68x-1.87x, with fewer resources and without workload assumptions.

Thank You

